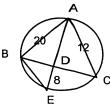
GEOMETRY

1. The bisector of $\angle A$ of $\triangle ABC$ intersects the circumcircle of $\triangle ABC$ at E, and \overline{AE} intersects \overline{BC} at D. If AB = 20, AC = 12, and DE = 8, what is the length of \overline{AD} ?



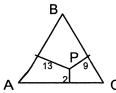
An equilateral triangle of perimeter 6 sits atop a square of perimeter 8, and the two share a side in common. Line segments of length x connect the two vertices of the square that aren't also vertices of the triangle to the vertex of the triangle that isn't also a vertex of the square. What is the value of x?

Express your answer in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers.

3. What is the numerical value of b for which the length of the path from A(0, 2) to B(b, 0) to C(c, 10) to D(5, 9) will be a **minimum**? Express your answer as a fraction in simplest form.

[HINT, since the shortest distance between *two* points is a straight line segment, draw $\overline{A'BCD'}$, such that its length is equal to the path \overline{AB} to \overline{BC} to \overline{CD} .]

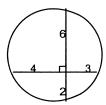
4. **P** is a point in the interior of **equilateral** triangle ABC, such that perpendicular segments from P to each of the sides of \triangle ABC measure 2 inches, 9 inches and 13 inches. Find the number of square inches in the area of \triangle ABC, and express your answer in simplest radical form.



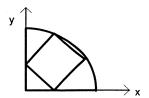
- Quadrilateral Q has an inscribed circle. If the lengths of 3 consecutive sides of Q are 13, 14, and 15, what is the perimeter of Q? Express your answer in simplest form.
- Find the area of the convex quadrilateral formed by connecting the points of intersection of the graphs of xy = 20 and $x^2 + y^2 = 41$. Express your answer in simplest form.
- 7. The lengths of the bases of trapezoid T are 8 and 18. If the lower base angles of trapezoid T are complementary, what is the distance between the midpoints of the upper and lower bases of T? Express your answer in simplest form Hint: Draw segments parallel to the legs.

- 8. A circle passes through point A(3, 4) and point B(6, 8) and is tangent to the x axis at point C(k, 0). Find k and express in simplest radical form.

 (Hint: extend chord \overline{AB} .)
- 9. Two perpendicular chords intersect in circle O. The lengths of the segments of the longer chord are 6 and 2, while the lengths of the shorter chord are 4 and 3. Find the length of the diameter of circle O, and express it in simplest radical form.



- 10. Given $\triangle ABC$ with AB = 14, BC = 15, AC = 13. The length of the shortest altitude is $\frac{56}{5}$. Find the sum of the lengths of the two longer altitudes of $\triangle ABC$ in simplest form.
- 11. Given $\triangle ABC$, AC = 10, BC = 12. D is on \overline{AB} , such that $\overline{CD} \perp \overline{AB}$. Point E lies on \overline{CD} , such that AE = 4, EB = x. Compute x.
- 12. The lengths of the diagonals of a rhombus are 16 and 30. Compute the length of an altitude drawn from a vertex to the opposite side.
- 13. As shown in the diagram below, a square is inscribed in a quadrant of a circle with a radius of 5 inches. Find the number of square inches in the area of the square. Express your answer in simplest form.



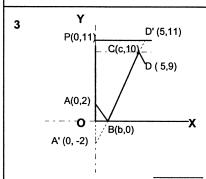
Solutions:

AD = x, Triangles ACD and AEB are similar so

$$x:20 = 12:x+8$$

$$x^{2} + 8x - 240 = 0$$

 $(x - 12)(x + 20) = 0$
 $x = 12$ reject $x = -20$



By reflections, the length of $\overline{A'BCD'}$ is equal to the length of the path AB to BC to CD.

$$\Delta A'OB \sim \Delta A'PD'$$

So
$$\frac{2}{b} = \frac{13}{5}$$
 thus $b = \frac{10}{13}$

5).

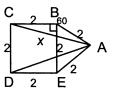
A possible quadrilateral is shown

> Sides of quadrilateral Q are tangent segments to the inscribed circle. So a = 7 and b = 7

Perimeter is 13 + 14 + 15 + 14 = 56

Theorem: For any quadrilateral with an inscribed circle, the sum of the lengths of each pair of opposite sides of the quadrilateral is the same.

2.



$$AC^{2} = 2^{2} + 2^{2} - 2 \cdot 2 \cdot 2 \cos 150^{\circ}$$
$$= 4 + 4 - 8 \left(-\frac{\sqrt{3}}{2} \right) = 8 + 4\sqrt{3}$$

$$AC = \sqrt{8 + 4\sqrt{3}} = \sqrt{8 + 2\sqrt{12}} = \sqrt{6 + 2 + 2\sqrt{6 \cdot 2}}$$

$$AC = \sqrt{6} + \sqrt{2}$$

$$AC = \sqrt{6} + \sqrt{2}$$
 Note: $(\sqrt{6} + \sqrt{2})^2 =$

$$\sqrt{6}^2 + 2\sqrt{6}\sqrt{2} + \sqrt{2}^2 = 6 + 2\sqrt{12} + 2 = 8 + 4\sqrt{3} = AC^2$$

4)

Area triangle APB = (1/2)(13)s

Area triangle BPC = (1/2)(9)s

Area triangle APC = (1/2)(2)s

Area triangle ABC =(24/2)s=12s

Area of an equilateral \triangle ABC = $\frac{s^2}{4}\sqrt{3}$ =12s

$$s = 16\sqrt{3}$$

Area
$$\triangle ABC = \frac{s^2}{4} \sqrt{3} = \frac{(16\sqrt{3})^2}{4} \sqrt{3} = 192\sqrt{3}$$

6)
$$x^2 + (20/r)^2 = 41$$
 or

$$x^2 + 400 / x^2 = 41$$

So
$$x^4 - 41x^2 + 400 = 0$$
 or

$$(x^2 - 16)(x^2 - 25) = 0$$

Thus $x = \pm 4$, $x = \pm 5$ giving the solutions:

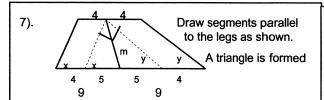
(4, 5), (-4, -5), (5, 4), and (-5,-4)

These form a rectangle, whose dimensions are:

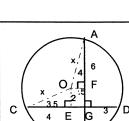
$$d_{(5,4)(4,5)} = \sqrt{(5-4)^2 + (4-5)^2} = \sqrt{2}$$

$$d_{(5,4)(-4,-5)} = \sqrt{(5-(-4))^2 + (4-(-5))^2} = \sqrt{162}$$

The area is therefore $(\sqrt{2})(\sqrt{162}) = \sqrt{324}$ or 18



Since the base angles are complementary, x + y = 90, so the triangle formed is a rt Δ and the line joining the midpoints of the bases is also the median to the hypotenuse of this right triangle. Thus segment m is 5 since the length of the median of a rt. $\Delta = \frac{1}{2}$ of the hypotenuse so it is $\frac{1}{2}(10) = 5$



9.). From center O, draw
$$\perp$$
 segments to chords \overline{AB} and \overline{CD} .

CE = ED = 3.5, AF = FB = 4.
Thus EG =
$$3.5 - 3 = 0.5$$

Since EG = OF, OF = 0.5
Also FG = OE = $4 - 2 = 2$

$$(AO)^2 = (\frac{1}{2})^2 + 4^2$$

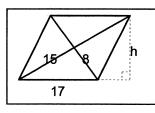
$$(AO)^2 = \begin{pmatrix} 1/4 \\ 1/4 \end{pmatrix} + 16 = 65/4$$
 So $AO = \sqrt{65}/2$

So
$$AO = \sqrt{65}/2$$

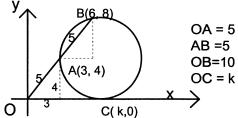
Thus the Diameter = $2(AO) = \sqrt{65}$ Alternatively: $(CO)^2 = (\frac{7}{2})^2 + 2^2$;

$$(CO)^2 = (49/4) + 4 = 65/4$$
, and thus $CO = \sqrt{65}/2$,

Diameter =
$$2(CO) = \sqrt{65}$$



8.



 $(secant)(external segment) = (tangent)^2$ Since

(OB)(OA) = (OC)²

$$k^2 = (10)(5) = 50$$
,
 $k = 5\sqrt{2}$

10). The area of the $\Delta = \frac{1}{2}$ bh

So
$$\frac{1}{2}(15)(56/5) = \frac{1}{2}(h_2)(14) = \frac{1}{2}(h_3)(13)$$

84 = $\frac{1}{2}(h_2)(14)$ and 84 = $\frac{1}{2}(h_3)(13)$

$$h_{2} = 1_{2}$$

$$h_{3} = \frac{168}{13}$$

$$h_2 + h_3 = 12 + \frac{168}{13}$$

$$= \frac{156}{13} + \frac{168}{13} = \frac{324}{13}$$

11. Using the Pythagorean Thm:

$$10^2 - w^2 = 12^2 - y^2$$

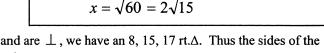
$$4^2 - w^2 = x^2 - y^2$$

Subtracting these equations, we get

$$10^2 - 4^2 = 12^2 - x^2$$

So
$$x^2 = 60$$

$$x = \sqrt{60} = 2\sqrt{15}$$



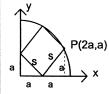
Since the diagonals of a rhombus bisect each other and are \perp , we have an 8, 15, 17 rt. Δ . Thus the sides of the rhombus are 17. The area of the rhombus = $\frac{1}{2}$ $d_1 \cdot d_2 = \frac{1}{2}$ (30)(16) = 240 The area of the rhombus = b h = 17hand

So
$$17h = 240$$
 and $h = 240/17$

13. Area of the square = s^2

Since the inscribed figure is a square of side s, the coordinates of P, a vertex of the square (Notice, in locating P, two congruent isosceles right triangles are formed.)

Since the radius of circle is 5, and P is on the circle whose equation is $x^2 + y^2 = 5^2$



$$(2a)^2 + (a)^2 = 5^2$$

$$(2a)^2 + (a)^2 = 5^2$$
 or $4a^2 + a^2 = 25$

$$5a^2 = 25$$
 so $a^2 = 5$ and so $a = \sqrt{5}$

Since
$$s = a\sqrt{2}$$
 the area of the square, $s^2 = (a\sqrt{2})^2 = 2a^2$.

Thus the square's area is 2(5) = 10

EXTRA ON QUESTION #2

Solving we get:

$$AC^{2} = 2^{2} + 2^{2} - 2 \cdot 2 \cdot 2 \cos 150^{\circ}$$

$$= 4 + 4 - 8 \left(-\frac{\sqrt{3}}{2} \right) = 8 + 4\sqrt{3}$$

$$AC = \sqrt{8 + 4\sqrt{3}}$$

EASY!

BUT HOW DO WE GET OUR ANSWER IN THE DESIRED FORM?

Express your answer in the form $\sqrt{a} + \sqrt{b}$, where a and b are integers.

WORKS BACKWARDS (ALWAYS A VIABLE STRATEGY) FROM THE DESIRED FORM UNTIL YOU SEE A CONNECTION!

AC =
$$\frac{\text{Desired}}{\sqrt{a} + \sqrt{b}}$$
 $\frac{\text{Ours}}{AC = \sqrt{8 + 4\sqrt{3}}}$?
 $(AC)^2 = (\sqrt{a} + \sqrt{b})^2$ $(AC)^2 = 8 + 4\sqrt{3}$?
= $(\sqrt{a})^2 + 2\sqrt{a}\sqrt{b} + (\sqrt{b})^2$
= $a + 2\sqrt{ab} + b$ = $8 + 2\sqrt{12}$ YES!
 $a + b = 8, ab = 12$

So our desired a and b values must be 6 and 2

$$AC = \sqrt{6} + \sqrt{2}$$

Note:
$$(\sqrt{6} + \sqrt{2})^2 = \sqrt{6}^2 + 2\sqrt{6}\sqrt{2} + \sqrt{2}^2 = 6 + 2\sqrt{12} + 2 = 8 + 4\sqrt{3} = AC^2$$

Try another:

Express $\sqrt{13+4\sqrt{10}}$ in the form $\sqrt{a}+\sqrt{b}$, where a and b are integers.

			*
			*
		•	